
10/1/19, 11'45 AMLecture 11

Page 1 of 2http://localhost:8888/nbconvert/html/Lecture%2011.ipynb?download=false

In [16]:

In [17]: zero_parity_delta = { ('even','0') : 'odd', ('even','1') : 'even',
 ('odd', '0') : 'even', ('odd', '1') : 'odd'}

In [18]: dfa_accepts('even', zero_parity_delta, { 'even' }, "00")

In [19]: dfa_accepts('even', zero_parity_delta, { 'even' }, "000")

In [20]: dfa_accepts('even', zero_parity_delta, { 'even' }, "011011010")

In [23]: import time
import random
input_str = ''.join(["01"[random.randrange(2)] for _ in range(30000)])
start_time = time.time()
for _ in range(1000):
 dfa_accepts('even', zero_parity_delta, { 'even' }, input_str)
end_time = time.time()
print(f"Time taken {end_time-start_time:.3f}s")

def dfa_accepts(start_state, delta, accept_states, string):
 """
 Return True if a DFA specified by the transition function `delta`,
 startingin state `start_state` and with accepting states
 `accept_states`, accepts the input `string`
 """
 cur_state = start_state
 for char in string:
 cur_state = delta[(cur_state,char)]
 return (cur_state in accept_states)

Out[18]: True

Out[19]: False

Out[20]: True

Time taken 2.141s

10/1/19, 11'45 AMLecture 11

Page 2 of 2http://localhost:8888/nbconvert/html/Lecture%2011.ipynb?download=false

In [24]: def hanoi(n, s, t, x):
 """ Moves `n` disks from pole `s` to pole `t`, leaving `x` empty
 """
 if n > 0:
 hanoi(n-1, s, x, t)
 print(f"moving disk {n} from {s} to {t}")
 hanoi(n-1, x, t, s)
 else:
 pass

In [25]: hanoi(5, 1, 2, 3)

moving disk 1 from 1 to 2
moving disk 2 from 1 to 3
moving disk 1 from 2 to 3
moving disk 3 from 1 to 2
moving disk 1 from 3 to 1
moving disk 2 from 3 to 2
moving disk 1 from 1 to 2
moving disk 4 from 1 to 3
moving disk 1 from 2 to 3
moving disk 2 from 2 to 1
moving disk 1 from 3 to 1
moving disk 3 from 2 to 3
moving disk 1 from 1 to 2
moving disk 2 from 1 to 3
moving disk 1 from 2 to 3
moving disk 5 from 1 to 2
moving disk 1 from 3 to 1
moving disk 2 from 3 to 2
moving disk 1 from 1 to 2
moving disk 3 from 3 to 1
moving disk 1 from 2 to 3
moving disk 2 from 2 to 1
moving disk 1 from 3 to 1
moving disk 4 from 3 to 2
moving disk 1 from 1 to 2
moving disk 2 from 1 to 3
moving disk 1 from 2 to 3
moving disk 3 from 1 to 2
moving disk 1 from 3 to 1
moving disk 2 from 3 to 2
moving disk 1 from 1 to 2

